Download nvidia cuda toolkit 12 0 1 for windows 10
Author: v | 2025-04-25
Download the NVIDIA CUDA Driver: Command Prompt as the primary system shell for Windows 11. Press ⊞ Windows yes install cuda-toolkit-12-0 cuda-toolkit-11-1 Add NVIDIA to the Source Unable to download CUDA using the NVIDIA Toolkit cuda_12.8.0_571.96_windows. CUDA-GDB. cuda, installation, windows-driver. 1: 62: Febru NVIDIA CUDA 11.0 Windows 10 x64. CUDA Setup and Installation. 0: 501: J nvidia cuda 9.1 installation fail in windows 10
Difference between nvidia-cuda-toolkit and cuda-toolkit-12-6
]cuda-runtime-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-samples-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-samples-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-samples-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-samples-11-0 11.0.221-1 [NVIDIA CUDA/ ]cuda-samples-11-1 11.1.105-1 [NVIDIA CUDA/ ]cuda-samples-11-2 11.2.152-1 [NVIDIA CUDA/ ]cuda-samples-11-3 11.3.58-1 [NVIDIA CUDA/ ]cuda-samples-11-4 11.4.120-1 [NVIDIA CUDA/ ]cuda-samples-11-5 11.5.56-1 [NVIDIA CUDA/ ]cuda-samples-11-6 11.6.101-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-0 11.0.221-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-1 11.1.105-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-2 11.2.152-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-3 11.3.111-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-4 11.4.120-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-5 11.5.114-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-6 11.6.124-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-7 11.7.91-1 [NVIDIA CUDA/ ]cuda-sanitizer-api-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-sanitizer-api-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-thrust-11-3 11.3.109-1 [NVIDIA CUDA/ ]cuda-toolkit-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-toolkit-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-toolkit-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-toolkit-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-toolkit-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-toolkit-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-toolkit-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-toolkit-11-3-config-common 11.3.109-1 [NVIDIA CUDA/ ]cuda-toolkit-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-toolkit-11-4-config-common 11.4.148-1 [NVIDIA CUDA/ ]cuda-toolkit-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-toolkit-11-5-config-common 11.5.117-1 [NVIDIA CUDA/ ]cuda-toolkit-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-toolkit-11-6-config-common 11.6.55-1 [NVIDIA CUDA/ ]cuda-toolkit-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-toolkit-11-7-config-common 11.7.99-1 [NVIDIA CUDA/ ]cuda-toolkit-11-config-common 11.7.99-1 [NVIDIA CUDA/ ]cuda-toolkit-config-common 11.7.99-1 [NVIDIA CUDA/ ]cuda-tools-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-tools-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-tools-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-tools-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-tools-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-tools-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-tools-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-tools-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-tools-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-tools-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-tools-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-visual-tools-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-visual-tools-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-visual-tools-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-7 11.7.1-1 [NVIDIA CUDA/ ]graphsurgeon-tf 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libcuda1-340 340.108-0ubuntu8 [Ubuntu/jammy multiverse]libcuda1-384 418.226.00-0ubuntu1 [NVIDIA CUDA/ ]libcudart11.0 11.5.117~11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]libcudnn8 8.5.0.96-1+cuda11.7 [NVIDIA CUDA/ ]libcudnn8-dev 8.5.0.96-1+cuda11.7 [NVIDIA CUDA/ ]libnccl-dev 2.14.3-1+cuda11.7 [NVIDIA CUDA/ ]libnccl2 2.14.3-1+cuda11.7 [NVIDIA CUDA/ ]libnvinfer-bin 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-plugin-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-plugin8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-samples 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvonnxparsers-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvonnxparsers8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvparsers-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvparsers8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]nvidia-cuda-dev 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-gdb 11.5.114~11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-toolkit 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-toolkit-doc 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-toolkit-gcc 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cudnn 8.2.4.15~cuda11.4 [Ubuntu/jammy multiverse]onnx-graphsurgeon 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]python-pycuda-doc 2021.1~dfsg-2build2 [Ubuntu/jammy multiverse]python3-libnvinfer 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]python3-libnvinfer-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]python3-pycuda 2021.1~dfsg-2build2 [Ubuntu/jammy multiverse]python3-pyhst2-cuda 2020c-5build1 [Ubuntu/jammy multiverse]relion-cuda 3.1.0-2 [Ubuntu/jammy multiverse]relion-gui-cuda 3.1.0-2 [Ubuntu/jammy multiverse]tensorrt 8.4.3.1-1+cuda11.6 [NVIDIA CUDA/ ]tensorrt-dev 8.4.3.1-1+cuda11.6 [NVIDIA CUDA/ ]tensorrt-libs 8.4.3.1-1+cuda11.6 [NVIDIA CUDA/ ]uff-converter-tf 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]Seems versions match up, 11.7Would love some help! Did you got any help , I am facing the same issue .
NVIDIA CUDA Toolkit 12.2.0 (for Windows 10) Download for
Powerful and reliable programming model and computing toolkit Home Developer Tools NVIDIA CUDA Toolkit 12.8.0 (for Windows 11) Old Versions Browse by CompanyAdobe, Apowersoft, Ashampoo, Autodesk, Avast, Corel, Cyberlink, Google, iMyFone, iTop, Movavi, PassFab, Passper, Stardock, Tenorshare, Wargaming, Wondershare Sponsored January, 24th 2025 - 3.2 GB - Freeware Review Change Log Old Versions NVIDIA CUDA Toolkit 12.8.0 (for Windows 11) Date released: 24 Jan 2025 (one month ago) NVIDIA CUDA Toolkit 12.8.0 (for Windows 10) Date released: 24 Jan 2025 (one month ago) NVIDIA CUDA Toolkit 12.6.0 (for Windows 11) Date released: 02 Aug 2024 (8 months ago) NVIDIA CUDA Toolkit 12.5.0 (for Windows 11) Date released: 22 May 2024 (10 months ago) NVIDIA CUDA Toolkit 12.4.0 (for Windows 11) Date released: 06 Mar 2024 (one year ago) NVIDIA CUDA Toolkit 12.3.0 (for Windows 11) Date released: 20 Oct 2023 (one year ago) NVIDIA CUDA Toolkit 12.2.0 (for Windows 11) Date released: 29 Jun 2023 (one year ago) NVIDIA CUDA Toolkit 12.0.1 (for Windows 11) Date released: 01 Mar 2023 (2 years ago) NVIDIA CUDA Toolkit 12.0.0 (for Windows 11) Date released: 09 Dec 2022 (2 years ago) NVIDIA CUDA Toolkit 11.8.0 (for Windows 11) Date released: 04 Oct 2022 (2 years ago) NVIDIA CUDA Toolkit 11.7.0 (for Windows 11) Date released: 12 May 2022 (3 years ago) NVIDIA CUDA Toolkit 11.6.1 (for Windows 11) Date released: 11 Mar 2022 (3 years ago) NVIDIA CUDA Toolkit 11.6.0 (for Windows 11) Date released: 13 Jan 2022 (3 years ago) NVIDIA CUDA Toolkit 12.2.0 (for Windows 10) Date released: 29 Jun 2023 (one year ago) NVIDIA CUDA Toolkit 12.0.1 (for Windows 10) Date released: 01 Mar 2023 (2 years ago) NVIDIA CUDA Toolkit 12.0.0 (for Windows 10) Date released: 09 Dec 2022 (2 years ago) NVIDIA CUDA Toolkit 11.8.0 (for Windows 10)Downloading NVIDIA CUDA Toolkit 11.8.0 (for Windows 10
ToolchainNVIDIA CUDA Toolkit (available at Microsoft Windows® operating systems:Microsoft Windows 11 21H2 (SV1)Microsoft Windows 11 22H2 (SV2)Microsoft Windows 11 23H2Microsoft Windows 10 22H2Microsoft Windows Server 2022Table 1 Windows Compiler Support in CUDA 12.6 Update 3Compiler*IDENative x86_64Cross-compilation (32-bit on 64-bit)C++ DialectMSVC Version 193xVisual Studio 2022 17.xYESNot supportedC++14 (default), C++17, C++20MSVC Version 192xVisual Studio 2019 16.xYESC++14 (default), C++17MSVC Version 191xVisual Studio 2017 15.x (RTW and all updates)YESC++14 (default), C++17* Support for Visual Studio 2015 is deprecated in release 11.1; support for Visual Studio 2017 is deprecated in release 12.5.32-bit compilation native and cross-compilation is removed from CUDA 12.0 and later Toolkit. Use the CUDA Toolkit from earlier releases for 32-bit compilation. CUDA Driver will continue to support running 32-bit application binaries on GeForce GPUs until Ada. Ada will be the last architecture with driver support for 32-bit applications. Hopper does not support 32-bit applications.Support for running x86 32-bit applications on x86_64 Windows is limited to use with:CUDA DriverCUDA Runtime (cudart)CUDA Math Library (math.h)1.2. About This DocumentThis document is intended for readers familiar with Microsoft Windows operating systems and the Microsoft Visual Studio environment. You do not need previous experience with CUDA or experience with parallel computation.2. Installing CUDA Development ToolsBasic instructions can be found in the Quick Start Guide. Read on for more detailed instructions.The setup of CUDA development tools on a system running the appropriate version of Windows consists of a few simple steps:Verify the system has a CUDA-capable GPU.Download the NVIDIA CUDA Toolkit.Install the NVIDIA CUDA Toolkit.Test that the installed. Download the NVIDIA CUDA Driver: Command Prompt as the primary system shell for Windows 11. Press ⊞ Windows yes install cuda-toolkit-12-0 cuda-toolkit-11-1 Add NVIDIA to the Source Unable to download CUDA using the NVIDIA Toolkit cuda_12.8.0_571.96_windows. CUDA-GDB. cuda, installation, windows-driver. 1: 62: Febru NVIDIA CUDA 11.0 Windows 10 x64. CUDA Setup and Installation. 0: 501: J nvidia cuda 9.1 installation fail in windows 10Downloading NVIDIA CUDA Toolkit 12.0.1 (for Windows 10
Skip to content Navigation Menu GitHub Copilot Write better code with AI Security Find and fix vulnerabilities Actions Automate any workflow Codespaces Instant dev environments Issues Plan and track work Code Review Manage code changes Discussions Collaborate outside of code Code Search Find more, search less Explore Learning Pathways Events & Webinars Ebooks & Whitepapers Customer Stories Partners Executive Insights GitHub Sponsors Fund open source developers The ReadME Project GitHub community articles Enterprise platform AI-powered developer platform Pricing Provide feedback Saved searches Use saved searches to filter your results more quickly //voltron/issues_fragments/issue_layout;ref_cta:Sign up;ref_loc:header logged out"}"> Sign up Notifications You must be signed in to change notification settings Fork 4k Star 38.7k DescriptionDescriptionI am trying to use whisper-cli.exe with CUDA support on Windows to leverage my NVIDIA GeForce RTX 2050 GPU, but the application is not utilizing CUDA (showing CUBLAS = 0 in system_info). Despite following the instructions in the README and making the suggested changes, the program continues to run on the CPU instead of the GPU.Steps to ReproduceInstalled CUDA Toolkit 12.8 from and NVIDIA driver version 571.96 (confirmed via nvidia-smi).Cloned the whisper.cpp repository (version 1.7.4) and navigated to the directory:cd C:\Users\carwy\Downloads\Compressed\whisper.cpp-1.7.4\whisper.cpp-1.7.4Built the project with CUDA support:cmake -B build -DGGML_CUDA=1 -DCMAKE_BUILD_TYPE=Release -DCMAKE_CUDA_ARCHITECTURES=native -DCUDAToolkit_ROOT="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.8"cmake --build build --config Release --verboseEnsured all necessary DLLs (ggml-cuda.dll, cudart64_12.dll, cublas64_12.dll) are in build\bin\Release.Modified src/CMakeLists.txt to include:if (GGML_CUDA)target_link_libraries(whisper PRIVATE ggml-cuda)endif()Ran the following command:.\whisper-cli.exe -m "C:\Users\carwy\Desktop\SubtitleApp\SubtitleApp Backupw\SubtitleApp\CoreAssets\Window\ggml-large-v3-turbo-q8_0.bin" -f "C:\Users\carwy\Downloads\Thoi gian troi qua that nhanh.wav"Expected Behaviorsystem_info in the output should show CUBLAS = 1, indicating CUDA is being used.GPU usage should increase (visible in nvidia-smi), and processing times (whisper_print_timings) should be significantly faster on the NVIDIA GeForce RTX 2050.Actual Behaviorsystem_info shows CUBLAS = 0:system_info: n_threads = 4 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | COREML = 0 | OPENVINO = 0 |nvidia-smi shows 0% GPU utilization and 0MiB memory usage duringDownloading NVIDIA CUDA Toolkit 11.3.1 (for Windows 10
C:\ drive unless made visible by you through folder options and show hidden files/folders (you can also see the folder in a command console). That is an important note because the CUDA SDK downloads all sample programs in that folder. Cuda 8 also install the GeForce driver version 369.30, which is not the latest version!The latest version is 375.95, so to download that driver, you need to get it from Note that if you are happy with the resolution of your computer, you may want to download the driver package, but not upgrade your current display driver (I upgraded mine, which demoted the factory resolution on my ASUS ROG, bad for gaming, but good for readability and Machine Learning).Now, let's do some testing: Open C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\0_Simple\matrixMul_vs2015.sln in Visual Studio 2015. Compile in debug mode, go to a command line at C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64\Debug and run matrixMul.exeYou should pass the test.Now, note that cuDNN has specific installation instructions per platform. For Windows, it says you need to add the cuDNN install path to your PATH envionment variable, and various other mods to your Visual Studio projects for Include and Library folders. Make a note of these ( Since we're focusing on Theano, it is simpler to actually take the cuDNN binaries and copy them over to the CUDA SDK folders: Copy cudnn64_5.dll to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin Copy cudnn.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include Copy cudnn.lib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64Next, we need to install the Windows 10 SDK from There must be a reason why that download does not ship with Windows by default nor installs with Visual Studio. Maybe someone can tell me.Next we install the Microsoft Visual C++ Compiler for Python 2.7. Yup, 2.7, even though we are going to use Python 3.4 on Theano. That is because they are used in different layers in the Theano-to-GPU toolchain. Download from now now we are finally ready to modify the Nvidia CUDA profile at C:\Program Files\NVIDIA GPU Computing Toolkit\v8.0\bin\nvcc.profile. This is the new content, specialized for Windows 10, CUDA 8, and Visual Studio 2015:TOP = $(_HERE_)/..NVVMIR_LIBRARY_DIR = $(TOP)/nvvm/libdevicePATH += $(TOP)/open64/bin;$(TOP)/nvvm/bin;$(_HERE_);$(TOP)/lib;INCLUDES += "-I$(TOP)/include" "-I$(TOP)/include/cudart" "-IC:/Program Files (x86)/Microsoft Visual Studio 12.0/VC/include" "-IC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Include" $(_SPACE_)LIBRARIES =+ $(_SPACE_) "/LIBPATH:$(TOP)/lib/$(_WIN_PLATFORM_)" "/LIBPATH:C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64" "/LIBPATH:C:/Program Files (x86)/Common Files/Microsoft/Visual C++ for Python/9.0/VC/lib/amd64" "/LIBPATH:C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\x64"CUDAFE_FLAGS +=PTXAS_FLAGS += And with that, we should be done with Visual Studio, CUDA, cuDNN, and GPU setup (we should, but we'll find out soon enough not..). Onto Theano for now.Setting up TheanoTheano is one of the great Machine Learning frameworks, together with Facebooks' Torch, Google's TensorFlow, U Berkeley's Caffe, and Microsoft's CNTK. Keras is an awesome deep learning framework, too, but it's more of a wrapper over Theano, simplifying Theano neural network programming for us. Theano is brought to us by Yoshua Bengio and his ML group at Universite de Montreal ( Why Canada? Because their equivalent of our National Science Foundation was more forward thinking than our NSF as it extendedDownloading NVIDIA CUDA Toolkit 11.6.0 (for Windows 10
October 3, 2022, 3:33pm 1 Hello :)I’m facing the above error when trying to run deviceQuery. (I’m attempting to enable GPU acceleration on WSL2).All relevant info:./deviceQuery./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking)cudaGetDeviceCount returned 35-> CUDA driver version is insufficient for CUDA runtime versionResult = FAILnvidia-smi.exe+-----------------------------------------------------------------------------+| NVIDIA-SMI 517.40 Driver Version: 517.40 CUDA Version: 11.7 ||-------------------------------+----------------------+----------------------+| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC || Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. || | | MIG M. ||===============================+======================+======================|| 0 NVIDIA GeForce ... WDDM | 00000000:01:00.0 On | N/A || 0% 49C P8 N/A / 72W | 221MiB / 4096MiB | 24% Default || | | N/A |+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+| Processes: || GPU GI CI PID Type Process name GPU Memory || ID ID Usage ||=============================================================================|| 0 N/A N/A 2556 C+G ...wekyb3d8bbwe\Video.UI.exe N/A || 0 N/A N/A 7720 C+G C:\Windows\explorer.exe N/A || 0 N/A N/A 8172 C+G ...5n1h2txyewy\SearchApp.exe N/A || 0 N/A N/A 8640 C+G ...y\ShellExperienceHost.exe N/A || 0 N/A N/A 9888 C+G ...2txyewy\TextInputHost.exe N/A || 0 N/A N/A 11584 C+G ...)\Surfshark\Surfshark.exe N/A || 0 N/A N/A 13380 C+G ...perience\NVIDIA Share.exe N/A || 0 N/A N/A 15724 C+G ...bbwe\Microsoft.Photos.exe N/A |+-----------------------------------------------------------------------------+wslfetchWindows Subsystem for Linux (WSL2)Build: 19043Branch: vb_releaseRelease: Ubuntu 22.04.1 LTSKernel: Linux 5.10.102.1-microsoft-standard-WSL2apt list | grep cudabart-cuda 0.7.00-5 [Ubuntu/jammy multiverse]boinc-client-nvidia-cuda 7.18.1+dfsg-4 [Ubuntu/jammy universe]cuda 11.7.1-1 [NVIDIA CUDA/ ]cuda-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-cccl-11-4 11.4.122-1 [NVIDIA CUDA/ ]cuda-cccl-11-5 11.5.62-1 [NVIDIA CUDA/ ]cuda-cccl-11-6 11.6.55-1 [NVIDIA CUDA/ ]cuda-cccl-11-7 11.7.91-1 [NVIDIA CUDA/ ]cuda-command-line-tools-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-command-line-tools-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-command-line-tools-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-command-line-tools-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-compat-10-0 410.129-1 [NVIDIA CUDA/ ]cuda-compat-10-1 418.226.00-1 [NVIDIA CUDA/ ]cuda-compat-10-2 440.118.02-1 [NVIDIA CUDA/ ]cuda-compat-11-0 450.203.03-1 [NVIDIA CUDA/ ]cuda-compat-11-1 455.45.01-1 [NVIDIA CUDA/ ]cuda-compat-11-2 460.106.00-1 [NVIDIA CUDA/ ]cuda-compat-11-3 465.19.01-1 [NVIDIA CUDA/ ]cuda-compat-11-4 470.141.03-1 [NVIDIA CUDA/ ]cuda-compat-11-5 495.29.05-1 [NVIDIA CUDA/ ]cuda-compat-11-6 510.85.02-1 [NVIDIA CUDA/ ]cuda-compat-11-7 515.65.01-1 [NVIDIA CUDA/ ]cuda-compiler-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-compiler-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-compiler-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-compiler-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-compiler-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-compiler-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-compiler-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-compiler-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-compiler-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-compiler-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-compiler-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-core-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-core-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-core-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-cross-qnx 10.0.130-1 [NVIDIA CUDA/ ]cuda-cross-qnx-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-cublas-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-cublas-dev-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-cudart-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-cudart-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-cudart-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-cudart-11-0 11.0.221-1 [NVIDIA CUDA/ ]cuda-cudart-11-1 11.1.74-1 [NVIDIA CUDA/ ]cuda-cudart-11-2 11.2.152-1 [NVIDIA CUDA/ ]cuda-cudart-11-3 11.3.109-1 [NVIDIA CUDA/ ]cuda-cudart-11-4 11.4.148-1 [NVIDIA CUDA/ ]cuda-cudart-11-5 11.5.117-1 [NVIDIA CUDA/ ]cuda-cudart-11-6 11.6.55-1 [NVIDIA CUDA/ ]cuda-cudart-11-7 11.7.99-1 [NVIDIA CUDA/ ]cuda-cudart-dev-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-cudart-dev-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-cudart-dev-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-cudart-dev-11-0 11.0.221-1 [NVIDIA CUDA/ ]cuda-cudart-dev-11-1 11.1.74-1NVIDIA CUDA Toolkit 12. - Chocolatey Software
October 30, 2010, 9:48am 1 Is it really in the spirit of openness to make CUDA available to all but demand a complex and multiple-week registration process for openCL? derek_c October 30, 2010, 9:48am 2 Is it really in the spirit of openness to make CUDA available to all but demand a complex and multiple-week registration process for openCL? OpenCL is an interface + an implementation. For the interface, there is no code to “open” really…On the other hand, CUDA’s compiler is Open64 which is already an open-source project…So… I really cannot understand your question, sorry. OpenCL is an interface + an implementation. For the interface, there is no code to “open” really…On the other hand, CUDA’s compiler is Open64 which is already an open-source project…So… I really cannot understand your question, sorry. derek_c November 10, 2010, 12:19am 5 The Nvidia implementation of OpenCL is only available to registered developers, and the registration process is horrible! There are dozens of companies with developer programmes that require minimal registration and grant immediate access to materials. They don’t say on the forms that approval might take weeks… derek_c November 10, 2010, 12:19am 6 The Nvidia implementation of OpenCL is only available to registered developers, and the registration process is horrible! There are dozens of companies with developer programmes that require minimal registration and grant immediate access to materials. They don’t say on the forms that approval might take weeks… What are you asking for exactly? If it’s just access to the SDK you want, Nvidia’s OpenCL 1.0 implementation is included in the CUDA toolkit, although I have to admit it wasn’t obvious where to find it going from their OpenCL page alone. All the references on the pages linked from there claim the SDK is available in the OpenCL toolkit, which doesn’t actually exist as far as I can tell. What are you asking for exactly? If it’s just access to the SDK you want, Nvidia’s OpenCL 1.0 implementation is included in the CUDA toolkit, although I have to admit it wasn’t obvious where to find it going from their OpenCL page alone. All the references on the pages linked from there claim the SDK is available in the OpenCL toolkit, which doesn’t actually exist as far as I can tell. avidday November 10, 2010, 4:50am 9 Err, no it isn’t. The current CUDA toolkit contains the complete OpenCL “toolchain” (such as it is, OpenCL is JIT compiled), code exmaples, and the OpenCL runtime ships with all modern driver releases on both Windows and Linux. Everything you need is available for download here without any form of registration or access limitations. avidday November 10, 2010, 4:50am 10 Err, no it isn’t. The. Download the NVIDIA CUDA Driver: Command Prompt as the primary system shell for Windows 11. Press ⊞ Windows yes install cuda-toolkit-12-0 cuda-toolkit-11-1 Add NVIDIA to the Source Unable to download CUDA using the NVIDIA Toolkit cuda_12.8.0_571.96_windows. CUDA-GDB. cuda, installation, windows-driver. 1: 62: Febru NVIDIA CUDA 11.0 Windows 10 x64. CUDA Setup and Installation. 0: 501: J nvidia cuda 9.1 installation fail in windows 10
NVIDIA CUDA Toolkit 12.0.1 (for Windows 10) Download - FileHorse
Software runs correctly and communicates with the hardware.2.1. Verify You Have a CUDA-Capable GPUYou can verify that you have a CUDA-capable GPU through the Display Adapters section in the Windows Device Manager. Here you will find the vendor name and model of your graphics card(s). If you have an NVIDIA card that is listed in that GPU is CUDA-capable. The Release Notes for the CUDA Toolkit also contain a list of supported products.The Windows Device Manager can be opened via the following steps:Open a run window from the Start MenuRun:control /name Microsoft.DeviceManager2.2. Download the NVIDIA CUDA ToolkitThe NVIDIA CUDA Toolkit is available at Choose the platform you are using and one of the following installer formats:Network Installer: A minimal installer which later downloads packages required for installation. Only the packages selected during the selection phase of the installer are downloaded. This installer is useful for users who want to minimize download time.Full Installer: An installer which contains all the components of the CUDA Toolkit and does not require any further download. This installer is useful for systems which lack network access and for enterprise deployment.The CUDA Toolkit installs the CUDA driver and tools needed to create, build and run a CUDA application as well as libraries, header files, and other resources.Download VerificationThe download can be verified by comparing the MD5 checksum posted at with that of the downloaded file. If either of the checksums differ, the downloaded file is corrupt and needs to be downloaded again.2.3. Install the CUDA SoftwareBeforeDownloading NVIDIA CUDA Toolkit 12.0.1 (for Windows 10) from
Of Rocky can be discovered by choosing Help → About in the application menus.Install CUDA toolkit 11.7.0 for Windows 10. Set the environment variable CUDA_PATH_V11_7 with the location of the CUDA toolkit. Example: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7. Ensure that the Visual Studio Integration is enabled during the installation of the CUDA Toolkit.After installing the CUDA Toolkit, copy the contents of the MSBuildExtensions directory from the CUDA Toolkit installation to the BuildCustomizations directory in your Microsoft Visual Studio installation. This can be done by opening a PowerShell window and running the following command: cp "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\visual_studio_integration\MSBuildExtensions\*" "C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\MSBuild\Microsoft\VC\v170\BuildCustomizations" -r -forceBuild tools - WindowsInstall Visual Studio Build Tools 2022, version 17.6.17.You can obtain the URL for this specific version by clicking the "Build Tools" link in the corresponding row of the Fixed Version Bootstrappers table at the following link: sure to install the Desktop development with C++ workload with at least the following components:VC++ 2022 version latest toolsWindows 10 SDKVisual C++ tools for CMake. Download the NVIDIA CUDA Driver: Command Prompt as the primary system shell for Windows 11. Press ⊞ Windows yes install cuda-toolkit-12-0 cuda-toolkit-11-1 Add NVIDIA to the Source Unable to download CUDA using the NVIDIA Toolkit cuda_12.8.0_571.96_windows. CUDA-GDB. cuda, installation, windows-driver. 1: 62: Febru NVIDIA CUDA 11.0 Windows 10 x64. CUDA Setup and Installation. 0: 501: J nvidia cuda 9.1 installation fail in windows 10NVIDIA CUDA Toolkit 11.5.0 (for Windows 10) Download - FileHorse
Access to resources, please visit the main Nsight™ Compute page.NVIDIA® Nsight™ Compute 2023.1 is available for download under the NVIDIA Registered Developer Program. Download 2023.1.2 Download 2023.1.1 Download 2023.1.0 Documentation PRODUCT INFO Supported Platforms Windows Linux Mac DRIVE OS Host Windows x86_64[1] Linux x86_64[1] Linux aarch64 sbsa[1] Linux aarch64 (L4T)[2] MacOS[1] - Target Windows x86_64[1] Linux x86_64[1] Linux PowerPC[1] Linux aarch64 sbsa[1] Linux aarch64 (L4T)[2] - DRIVE OS QNX aarch64[2][3] DRIVE OS Linux aarch64[2][3] Host platforms support the Nsight Compute UI for viewing reports, interactive profiling and remote connections. Applications are profiled on target platforms, which also support the Nsight Compute command line interface. Supported NVIDIA GPU architectures Ada: AD10x Ampere: A100 with Multi-Instance GPU, GA10x Hopper: H100 with Multi-Instance GPU Turing: TU1xx Volta: GV100[1], GV10B[2] [1] available in this download and the CUDA Desktop Toolkit [2] available in the Embedded or Drive toolkits only [3] Only the command line interface (CLI) is provided for these platforms. There is no Nsight Compute GUI application for these platforms Recommended Drivers NVIDIA Windows Driver - 531.14 or newer NVIDIA Linux Driver Linux - 530.30.02 or newer We recommend using drivers provided with the most recent CUDA Toolkit production release or a newer version. Older driver versions are also supported. References Overview (features) Getting Started (download, platforms, requirements) Documentation Downloads Revision History Videos News & Blogs Nsight Compute forumComments
]cuda-runtime-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-samples-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-samples-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-samples-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-samples-11-0 11.0.221-1 [NVIDIA CUDA/ ]cuda-samples-11-1 11.1.105-1 [NVIDIA CUDA/ ]cuda-samples-11-2 11.2.152-1 [NVIDIA CUDA/ ]cuda-samples-11-3 11.3.58-1 [NVIDIA CUDA/ ]cuda-samples-11-4 11.4.120-1 [NVIDIA CUDA/ ]cuda-samples-11-5 11.5.56-1 [NVIDIA CUDA/ ]cuda-samples-11-6 11.6.101-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-0 11.0.221-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-1 11.1.105-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-2 11.2.152-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-3 11.3.111-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-4 11.4.120-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-5 11.5.114-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-6 11.6.124-1 [NVIDIA CUDA/ ]cuda-sanitizer-11-7 11.7.91-1 [NVIDIA CUDA/ ]cuda-sanitizer-api-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-sanitizer-api-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-thrust-11-3 11.3.109-1 [NVIDIA CUDA/ ]cuda-toolkit-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-toolkit-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-toolkit-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-toolkit-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-toolkit-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-toolkit-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-toolkit-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-toolkit-11-3-config-common 11.3.109-1 [NVIDIA CUDA/ ]cuda-toolkit-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-toolkit-11-4-config-common 11.4.148-1 [NVIDIA CUDA/ ]cuda-toolkit-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-toolkit-11-5-config-common 11.5.117-1 [NVIDIA CUDA/ ]cuda-toolkit-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-toolkit-11-6-config-common 11.6.55-1 [NVIDIA CUDA/ ]cuda-toolkit-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-toolkit-11-7-config-common 11.7.99-1 [NVIDIA CUDA/ ]cuda-toolkit-11-config-common 11.7.99-1 [NVIDIA CUDA/ ]cuda-toolkit-config-common 11.7.99-1 [NVIDIA CUDA/ ]cuda-tools-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-tools-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-tools-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-tools-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-tools-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-tools-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-tools-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-tools-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-tools-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-tools-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-tools-11-7 11.7.1-1 [NVIDIA CUDA/ ]cuda-visual-tools-10-0 10.0.130-1 [NVIDIA CUDA/ ]cuda-visual-tools-10-1 10.1.243-1 [NVIDIA CUDA/ ]cuda-visual-tools-10-2 10.2.89-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-0 11.0.3-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-1 11.1.1-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-2 11.2.2-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-3 11.3.1-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-4 11.4.4-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-5 11.5.2-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-6 11.6.2-1 [NVIDIA CUDA/ ]cuda-visual-tools-11-7 11.7.1-1 [NVIDIA CUDA/ ]graphsurgeon-tf 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libcuda1-340 340.108-0ubuntu8 [Ubuntu/jammy multiverse]libcuda1-384 418.226.00-0ubuntu1 [NVIDIA CUDA/ ]libcudart11.0 11.5.117~11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]libcudnn8 8.5.0.96-1+cuda11.7 [NVIDIA CUDA/ ]libcudnn8-dev 8.5.0.96-1+cuda11.7 [NVIDIA CUDA/ ]libnccl-dev 2.14.3-1+cuda11.7 [NVIDIA CUDA/ ]libnccl2 2.14.3-1+cuda11.7 [NVIDIA CUDA/ ]libnvinfer-bin 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-plugin-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-plugin8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer-samples 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvinfer8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvonnxparsers-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvonnxparsers8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvparsers-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]libnvparsers8 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]nvidia-cuda-dev 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-gdb 11.5.114~11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-toolkit 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-toolkit-doc 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cuda-toolkit-gcc 11.5.1-1ubuntu1 [Ubuntu/jammy multiverse]nvidia-cudnn 8.2.4.15~cuda11.4 [Ubuntu/jammy multiverse]onnx-graphsurgeon 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]python-pycuda-doc 2021.1~dfsg-2build2 [Ubuntu/jammy multiverse]python3-libnvinfer 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]python3-libnvinfer-dev 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]python3-pycuda 2021.1~dfsg-2build2 [Ubuntu/jammy multiverse]python3-pyhst2-cuda 2020c-5build1 [Ubuntu/jammy multiverse]relion-cuda 3.1.0-2 [Ubuntu/jammy multiverse]relion-gui-cuda 3.1.0-2 [Ubuntu/jammy multiverse]tensorrt 8.4.3.1-1+cuda11.6 [NVIDIA CUDA/ ]tensorrt-dev 8.4.3.1-1+cuda11.6 [NVIDIA CUDA/ ]tensorrt-libs 8.4.3.1-1+cuda11.6 [NVIDIA CUDA/ ]uff-converter-tf 8.4.3-1+cuda11.6 [NVIDIA CUDA/ ]Seems versions match up, 11.7Would love some help! Did you got any help , I am facing the same issue .
2025-04-02Powerful and reliable programming model and computing toolkit Home Developer Tools NVIDIA CUDA Toolkit 12.8.0 (for Windows 11) Old Versions Browse by CompanyAdobe, Apowersoft, Ashampoo, Autodesk, Avast, Corel, Cyberlink, Google, iMyFone, iTop, Movavi, PassFab, Passper, Stardock, Tenorshare, Wargaming, Wondershare Sponsored January, 24th 2025 - 3.2 GB - Freeware Review Change Log Old Versions NVIDIA CUDA Toolkit 12.8.0 (for Windows 11) Date released: 24 Jan 2025 (one month ago) NVIDIA CUDA Toolkit 12.8.0 (for Windows 10) Date released: 24 Jan 2025 (one month ago) NVIDIA CUDA Toolkit 12.6.0 (for Windows 11) Date released: 02 Aug 2024 (8 months ago) NVIDIA CUDA Toolkit 12.5.0 (for Windows 11) Date released: 22 May 2024 (10 months ago) NVIDIA CUDA Toolkit 12.4.0 (for Windows 11) Date released: 06 Mar 2024 (one year ago) NVIDIA CUDA Toolkit 12.3.0 (for Windows 11) Date released: 20 Oct 2023 (one year ago) NVIDIA CUDA Toolkit 12.2.0 (for Windows 11) Date released: 29 Jun 2023 (one year ago) NVIDIA CUDA Toolkit 12.0.1 (for Windows 11) Date released: 01 Mar 2023 (2 years ago) NVIDIA CUDA Toolkit 12.0.0 (for Windows 11) Date released: 09 Dec 2022 (2 years ago) NVIDIA CUDA Toolkit 11.8.0 (for Windows 11) Date released: 04 Oct 2022 (2 years ago) NVIDIA CUDA Toolkit 11.7.0 (for Windows 11) Date released: 12 May 2022 (3 years ago) NVIDIA CUDA Toolkit 11.6.1 (for Windows 11) Date released: 11 Mar 2022 (3 years ago) NVIDIA CUDA Toolkit 11.6.0 (for Windows 11) Date released: 13 Jan 2022 (3 years ago) NVIDIA CUDA Toolkit 12.2.0 (for Windows 10) Date released: 29 Jun 2023 (one year ago) NVIDIA CUDA Toolkit 12.0.1 (for Windows 10) Date released: 01 Mar 2023 (2 years ago) NVIDIA CUDA Toolkit 12.0.0 (for Windows 10) Date released: 09 Dec 2022 (2 years ago) NVIDIA CUDA Toolkit 11.8.0 (for Windows 10)
2025-04-12Skip to content Navigation Menu GitHub Copilot Write better code with AI Security Find and fix vulnerabilities Actions Automate any workflow Codespaces Instant dev environments Issues Plan and track work Code Review Manage code changes Discussions Collaborate outside of code Code Search Find more, search less Explore Learning Pathways Events & Webinars Ebooks & Whitepapers Customer Stories Partners Executive Insights GitHub Sponsors Fund open source developers The ReadME Project GitHub community articles Enterprise platform AI-powered developer platform Pricing Provide feedback Saved searches Use saved searches to filter your results more quickly //voltron/issues_fragments/issue_layout;ref_cta:Sign up;ref_loc:header logged out"}"> Sign up Notifications You must be signed in to change notification settings Fork 4k Star 38.7k DescriptionDescriptionI am trying to use whisper-cli.exe with CUDA support on Windows to leverage my NVIDIA GeForce RTX 2050 GPU, but the application is not utilizing CUDA (showing CUBLAS = 0 in system_info). Despite following the instructions in the README and making the suggested changes, the program continues to run on the CPU instead of the GPU.Steps to ReproduceInstalled CUDA Toolkit 12.8 from and NVIDIA driver version 571.96 (confirmed via nvidia-smi).Cloned the whisper.cpp repository (version 1.7.4) and navigated to the directory:cd C:\Users\carwy\Downloads\Compressed\whisper.cpp-1.7.4\whisper.cpp-1.7.4Built the project with CUDA support:cmake -B build -DGGML_CUDA=1 -DCMAKE_BUILD_TYPE=Release -DCMAKE_CUDA_ARCHITECTURES=native -DCUDAToolkit_ROOT="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.8"cmake --build build --config Release --verboseEnsured all necessary DLLs (ggml-cuda.dll, cudart64_12.dll, cublas64_12.dll) are in build\bin\Release.Modified src/CMakeLists.txt to include:if (GGML_CUDA)target_link_libraries(whisper PRIVATE ggml-cuda)endif()Ran the following command:.\whisper-cli.exe -m "C:\Users\carwy\Desktop\SubtitleApp\SubtitleApp Backupw\SubtitleApp\CoreAssets\Window\ggml-large-v3-turbo-q8_0.bin" -f "C:\Users\carwy\Downloads\Thoi gian troi qua that nhanh.wav"Expected Behaviorsystem_info in the output should show CUBLAS = 1, indicating CUDA is being used.GPU usage should increase (visible in nvidia-smi), and processing times (whisper_print_timings) should be significantly faster on the NVIDIA GeForce RTX 2050.Actual Behaviorsystem_info shows CUBLAS = 0:system_info: n_threads = 4 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | COREML = 0 | OPENVINO = 0 |nvidia-smi shows 0% GPU utilization and 0MiB memory usage during
2025-04-05C:\ drive unless made visible by you through folder options and show hidden files/folders (you can also see the folder in a command console). That is an important note because the CUDA SDK downloads all sample programs in that folder. Cuda 8 also install the GeForce driver version 369.30, which is not the latest version!The latest version is 375.95, so to download that driver, you need to get it from Note that if you are happy with the resolution of your computer, you may want to download the driver package, but not upgrade your current display driver (I upgraded mine, which demoted the factory resolution on my ASUS ROG, bad for gaming, but good for readability and Machine Learning).Now, let's do some testing: Open C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\0_Simple\matrixMul_vs2015.sln in Visual Studio 2015. Compile in debug mode, go to a command line at C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64\Debug and run matrixMul.exeYou should pass the test.Now, note that cuDNN has specific installation instructions per platform. For Windows, it says you need to add the cuDNN install path to your PATH envionment variable, and various other mods to your Visual Studio projects for Include and Library folders. Make a note of these ( Since we're focusing on Theano, it is simpler to actually take the cuDNN binaries and copy them over to the CUDA SDK folders: Copy cudnn64_5.dll to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin Copy cudnn.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include Copy cudnn.lib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64Next, we need to install the Windows 10 SDK from There must be a reason why that download does not ship with Windows by default nor installs with Visual Studio. Maybe someone can tell me.Next we install the Microsoft Visual C++ Compiler for Python 2.7. Yup, 2.7, even though we are going to use Python 3.4 on Theano. That is because they are used in different layers in the Theano-to-GPU toolchain. Download from now now we are finally ready to modify the Nvidia CUDA profile at C:\Program Files\NVIDIA GPU Computing Toolkit\v8.0\bin\nvcc.profile. This is the new content, specialized for Windows 10, CUDA 8, and Visual Studio 2015:TOP = $(_HERE_)/..NVVMIR_LIBRARY_DIR = $(TOP)/nvvm/libdevicePATH += $(TOP)/open64/bin;$(TOP)/nvvm/bin;$(_HERE_);$(TOP)/lib;INCLUDES += "-I$(TOP)/include" "-I$(TOP)/include/cudart" "-IC:/Program Files (x86)/Microsoft Visual Studio 12.0/VC/include" "-IC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Include" $(_SPACE_)LIBRARIES =+ $(_SPACE_) "/LIBPATH:$(TOP)/lib/$(_WIN_PLATFORM_)" "/LIBPATH:C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64" "/LIBPATH:C:/Program Files (x86)/Common Files/Microsoft/Visual C++ for Python/9.0/VC/lib/amd64" "/LIBPATH:C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\x64"CUDAFE_FLAGS +=PTXAS_FLAGS += And with that, we should be done with Visual Studio, CUDA, cuDNN, and GPU setup (we should, but we'll find out soon enough not..). Onto Theano for now.Setting up TheanoTheano is one of the great Machine Learning frameworks, together with Facebooks' Torch, Google's TensorFlow, U Berkeley's Caffe, and Microsoft's CNTK. Keras is an awesome deep learning framework, too, but it's more of a wrapper over Theano, simplifying Theano neural network programming for us. Theano is brought to us by Yoshua Bengio and his ML group at Universite de Montreal ( Why Canada? Because their equivalent of our National Science Foundation was more forward thinking than our NSF as it extended
2025-04-11October 30, 2010, 9:48am 1 Is it really in the spirit of openness to make CUDA available to all but demand a complex and multiple-week registration process for openCL? derek_c October 30, 2010, 9:48am 2 Is it really in the spirit of openness to make CUDA available to all but demand a complex and multiple-week registration process for openCL? OpenCL is an interface + an implementation. For the interface, there is no code to “open” really…On the other hand, CUDA’s compiler is Open64 which is already an open-source project…So… I really cannot understand your question, sorry. OpenCL is an interface + an implementation. For the interface, there is no code to “open” really…On the other hand, CUDA’s compiler is Open64 which is already an open-source project…So… I really cannot understand your question, sorry. derek_c November 10, 2010, 12:19am 5 The Nvidia implementation of OpenCL is only available to registered developers, and the registration process is horrible! There are dozens of companies with developer programmes that require minimal registration and grant immediate access to materials. They don’t say on the forms that approval might take weeks… derek_c November 10, 2010, 12:19am 6 The Nvidia implementation of OpenCL is only available to registered developers, and the registration process is horrible! There are dozens of companies with developer programmes that require minimal registration and grant immediate access to materials. They don’t say on the forms that approval might take weeks… What are you asking for exactly? If it’s just access to the SDK you want, Nvidia’s OpenCL 1.0 implementation is included in the CUDA toolkit, although I have to admit it wasn’t obvious where to find it going from their OpenCL page alone. All the references on the pages linked from there claim the SDK is available in the OpenCL toolkit, which doesn’t actually exist as far as I can tell. What are you asking for exactly? If it’s just access to the SDK you want, Nvidia’s OpenCL 1.0 implementation is included in the CUDA toolkit, although I have to admit it wasn’t obvious where to find it going from their OpenCL page alone. All the references on the pages linked from there claim the SDK is available in the OpenCL toolkit, which doesn’t actually exist as far as I can tell. avidday November 10, 2010, 4:50am 9 Err, no it isn’t. The current CUDA toolkit contains the complete OpenCL “toolchain” (such as it is, OpenCL is JIT compiled), code exmaples, and the OpenCL runtime ships with all modern driver releases on both Windows and Linux. Everything you need is available for download here without any form of registration or access limitations. avidday November 10, 2010, 4:50am 10 Err, no it isn’t. The
2025-04-24